#热门
【HyperLRP中文车牌识别框架 v1.0】基于端到端的车牌识别无需进行字符分割+识别率高

2021-05-12 18
此资源仅限VIP下载
下载不了?请联系网站客服提交链接错误!
增值服务:

#热门
【HyperLRP中文车牌识别框架 v1.0】基于端到端的车牌识别无需进行字符分割+识别率高

郑重承诺丨完整源码网提供安全交易、信息保真!
增值服务:
¥ 38 源码 此资源仅限VIP下载 升级VIP 开通VIP尊享优惠特权
立即下载 升级会员
信息属性
  • 源码大小
  • 101MB
  • 开发语言
  • PHP+Mysql
  • 操作系统
  • Windows,Linux
详情介绍

源码简介与安装说明:
HyperLRP是一个开源的、基于深度学习高性能中文车牌识别库,由北京智云视图科技有限公司开发,支持PHP、C/C++、Python语言,Windows/Mac/Linux/Android/IOS 平台。

特性:
速度快 720p,单核 Intel 2.2G CPU (MaBook Pro 2015)平均识别时间低于100ms
基于端到端的车牌识别无需进行字符分割
识别率高,卡口场景准确率在95%-97%左右
轻量,总代码量不超1k行

Python 依赖:
Keras (>2.0.0)
Theano(>0.9) or Tensorflow(>1.1.x)
Numpy (>1.10)
Scipy (0.19.1)
OpenCV(>3.0)
Scikit-image (0.13.0)
PIL

CPP 依赖:
Opencv 3.4 以上版本

模型资源说明:
cascade.xml 检测模型 – 目前效果最好的cascade检测模型
cascade_lbp.xml 召回率效果较好,但其错检太多
char_chi_sim.h5 Keras模型-可识别34类数字和大写英文字 使用14W样本训练
char_rec.h5 Keras模型-可识别34类数字和大写英文字 使用7W样本训练
ocr_plate_all_w_rnn_2.h5 基于CNN的序列模型
ocr_plate_all_gru.h5 基于GRU的序列模型从OCR模型修改,效果目前最好但速度较慢,需要20ms。
plate_type.h5 用于车牌颜色判断的模型
model12.h5 左右边界回归模型

注意事项:
Win工程中若需要使用静态库,需单独编译
本项目的C++实现和Python实现无任何关联,都为单独实现
在编译C++工程的时候必须要使用OpenCV 3.3以上版本 (DNN 库),否则无法编译
安卓工程编译ndk尽量采用14b版本
测试截图:

【HyperLRP中文车牌识别框架 v1.0】基于端到端的车牌识别无需进行字符分割+识别率高

资源下载此资源仅限VIP下载,请先
客服QQ:814200782
收藏 (0) 打赏

感谢您的支持,我会继续努力的!

打开微信/支付宝扫一扫,即可进行扫码打赏哦,分享从这里开始,精彩与您同在
点赞 (0)

完整源码网-ym0.cc 查询/工具/应用 【HyperLRP中文车牌识别框架 v1.0】基于端到端的车牌识别无需进行字符分割+识别率高 https://ym0.cc/7609.html

常见问题

相关文章

评论
暂无评论
'); })(); My title page contents